Communications

Stereoselective Preparation of Functionalized Alkenylmagnesium Reagents via an Iodine-Magnesium Exchange Reaction

Mario Rottländer,† Laure Boymond,‡ Gérard Cahiez,*,‡ and Paul Knochel*,†

Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Ecole Supérieure de Chimie Organique et Minérale, Départment de Chimie 13, Boulevard de l'Hautil, F-95092 Cergy-Pontoise, France

Received September 25, 1998

Organomagnesium reagents are versatile organometallic reagents that have found wide applications. The high reactivity of the carbon-magnesium bond precludes the presence of many functionalities in these organometallics. However, low-temperature Grignard syntheses should allow the generation of polyfunctional organomagnesium reagents since they do not react to a great extent at -78 °C with functional groups such as esters, amides, or nitriles.2 Unfortunately, the low-temperature insertion of activated magnesium (Rieke-Mg) is inhibited by these functionalities.³ Recently, we have shown that polyfunctional aryl iodides bearing an ester or nitrile function undergo a low-temperature iodine-magnesium exchange⁵ in the presence of i-PrMgBr or i-Pr2Mg. However, typical alkenyl iodides are inert under these reaction conditions. Herein, we wish to report reaction conditions allowing the stereoselective generation of alkenylmagnesium reagents as well as applications of this exchange reaction in solid-phase synthesis. In strong contrast to functionalized aryl iodides for which the iodine-magnesium exchange was complete using a stoichiometric amount of i-PrMgBr at -20 to -40 °C, alkenyl iodides proved to be far less reactive. No exchange reaction was observed with i-PrMgBr under these conditions. The reaction of (E)-iodooctene (1a) with i-Pr₂Mg (1.1 equiv) requires a reaction time of 18 h at 25 °C for complete conversion to the corresponding (*E*)-octenylmagnesium derivative (**2a**). After treatment with tosyl cyanide (-78 °C, 5 h), the corresponding nitrile 3a was obtained in 71% isolated yield as only one stereoisomer showing that the iodine-magne-

1a : R = *n*-Hex 1b : R = Cl(CH₂)₃ E-X = PhCHO, TosCN

Table 1. Products of Type 3 Obtained after Quenching Functionalized Alkenylmagnesium of Type 2 Prepared via an Iodine-Magnesium Exchange of the Iodoalkenes of Type 1 with f-PrMgBr or f-Pr₂Mg

of Type 1 with <i>i</i> -PrMgBr or <i>i</i> -Pr ₂ Mg					
entry	alkenyl iodide	(°C, h)a	F-Xp	product	yield
	of type 1	(0, 11)		of type 3	(%) ^C
1	n-Hex	25,18	A	n-Hex ✓ CN 3a	71
2	1a	25,18	В	n-Hex Ph 3b OH	60
3	$CI(CH_2)_3 $	25,7	Α	CI(CH ₂) ₃ CN	72
4	1b	25,7	Α	CI(CH ₂) ₃ Ph 3d OH	62
5	MeO Ph	-70,12	В	MeO Ph Ph 3e OH	95
6	CN 1d	-70,12	В	CN 3fOH	81
7	1d	-70,12	С	PhS CN 3g	79
8	1d	-70,12	A	ON Sh	91
9	Me ₂ N O Ph	-70,12	С	Me ₂ N O Ph PhS 3i	64
10	1f CO ₂ Et	-70,12	В	Ph OH 3j CO ₂ Et	79
11	1f	-70,12	A	O CN 3k CO ₂ Et	87

^a Reaction conditions for the iodine-magnesium exchange reaction with i-PrMgBr or i-Pr₂Mg. b Key: (A) tosyl cyanide; (B) benzaldehyde; (C) diphenyl disulfide. Esolated yields of analytically pure product showing a stereomeric purity of the double bond

sium exchange on alkenyl iodides proceeds with complete retention of configuration of the double bond (Scheme 1 and Table 1). Similarly, the reaction of 2a with benzaldehyde provides only (E)-1-phenyl-2-nonenol (3b; entry 2 of Table 1) in 60% isolated yield. The reaction of a functionalized alkenyl iodide like (\check{E})-5-chloro-1-iodopentene (1b) with i-Pr₂-Mg is complete after 7 h at 25 °C, furnishing after respective treatment with tosyl cyanide or benzaldehyde the stereochemically pure (E)-products 3c and 3d in 72% and 62%

[†] Fachbereich Chemie der Philipps-Universität Marburg.

[‡] Ecole Supérieure de Chimie Organique et Minérale. (1) (a) Silverman, G. S.; Rakita, P. E., Eds. *Handbook of Grignard*-Reagents; Marcel Dekker: 1996. For recent applications, see: (b) Klos, A. M.; Heintzelman, G. R.; Weinreb, S. M. J. Org. Chem. 1997, 62, 3758. (c) Taber, D. F.; Green, J. H.; Geremia, J. M. J. Org. Chem. 1997, 62, 3758. (d) Hayashi, Y.; Shinokubo, H.; Oshima, K. Tetrahedron Lett. 1998, 39, 63. (e) Heron, N. M.; Adams, J. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 6205. (f) Houri, A. F.; Xu, Z.; Cogan, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 2943.

⁽²⁾ Rieke, R. D.; Xiong, H. J. Org. Chem. 1991, 56, 3109.

Villieras, J. Bull. Soc. Chim. Fr. 1967, 1520. (b) Paradies, H. H.; Görbing, M. Angew. Chem. 1969, 81, 293; Angew. Chem., Int. Ed. Engl. 1969, 8, 273. (c) Smith, C. F.; Moore, G. J.; Tamborski, C. J. Organomet Chem. 1971, 33, C21. (d) Cahiez, G.; Bernard, D.; Normant, J. F. J. Organomet. Chem. 1976, 113, 107. (e) Seyferth, D.; Lambert, R. L. J. Organomet. Chem. 1973, 54, 1234. (f) Redwane, N.; Moreau, P.; Commeyras, A. J. Fluorine Chem. 1982, 20, 699. (g) Furukawa, N.; Shibutani, T.; Fujihara, H. Tetrahedron Lett. 1987, 28, 5845. (h) Nishiyama, H.; Isaka, K.; Itoh, K.; Ohno, K.; Nagase, H.; Matsumoto, K.; Yoshiwara, H. *J. Org. Chem.* **1992**, *57*, 407. (i) Bolm, C.; Pupowicz, D. *Tetrahedron Lett.* **1997**, *38*, 7349.

Scheme 2 1) i-PrMgBr THE -70 °C, 1 h E-Y 3e-k: 64-97 %

R = Me, 3-cyanobenzyl, N,N-dimethylcarbamoyl, 4-carbethoxy-E-Y = PhCHO, TosCN, (PhS)₂

isolated yields (>99% E). The presence of an oxygenfunctionalized directing group⁶ should facilitate the iodinemagnesium exchange. Therefore, we have examined the reaction of polyfunctional 3-iodoallylic ethers such as 1c-f(Scheme 2 and Table 1). The readily available (Z)-3-iodoallylic ether⁷ **1c** was treated at −70 °C with *i*-PrMgBr for 12 h leading to a quantitative iodine-magnesium exchange reaction. The resulting alkenylmagnesium derivative was quenched with benzaldehyde, affording the expected (Z)unsaturated alcohol **3e** (95% yield; >99% Z). Remarkably, the related iodoallylic ethers 1d and 1f bearing a functional group like a cyanide or ethyl ester and the iodoallylic carbamate 1e undergo a clean formation of the corresponding polyfunctional alkenylmagnesium reagents. After being quenched with electrophiles such as benzaldehyde, diphenyl disulfide, or tosyl cyanide, the desired products $3\mathbf{f} - \mathbf{k}$ were obtained in 64-91% yield (>99% Z)8 (see Table 1). The iodine-magnesium exchange also opens the way for the preparation of alkenylmagnesium reagents for solid-phase synthesis. Thus, the treatment of the resin-attached (*Z*)alkenyl iodides 1g and 1h with i-PrMgBr (10 equiv) in a 40:1 THF/NMP mixture at −40 °C for 1 h followed by the addition of benzaldehyde (ca. 15 equiv) furnished after cleavage from the resin (1:9 TFA/CH₂Cl₂, rt, 15 min) the 2,5dihydrofuranes 31 and 3m with 98 and 97% purity (Scheme

3). 10 In the absence of NMP, a reaction time of 2.5 days was required to complete the exchange reaction for **1g** and 4 h for 1h.11

In summary, we have shown that highly functionalized alkenylmagnesium halides can be prepared at low temperature via an iodine-magnesium exchange performed with i-PrMgBr or i-Pr2Mg. Under these conditions, functional groups such as a cyanide, a carbamate, or even an ethyl ester are tolerated, and reactions with electrophilic functionalities such as an aldehyde, tosyl cyanide, or diphenyl disulfide proceed in good yields. 12 This method is also suitable for solid-phase organic synthesis and should find applications in combinatorial chemistry.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (SFB 260, Leibniz program), the BMBF program (03 D 0056 2), and BASF AG for generous support.

Supporting Information Available: Characterization data of compounds 3a-m.

JO981941L

(10) HPLC-purity (UV, 254 nm, RP 18, CH_3CN/H_2O (0.1% TFA) gradient 5-100% CH₃CN). Čhemical yield 85% based on loading of the resin.

(11) For theoretical studies on the origin of solvent acceleration in metalhalogen exchange reactions: Jedlicka, B.; Crabtree, R. H.; Siegbahn, P. E. M. Organometallics 1997, 16, 6021.

(12) Typical Procedure for the Preparation of a Polyfunctional Alkenylmagnesium Intermediate and Its Reaction with Benzaldehyde. Preparation of (*Z*)-4-(4-carbethoxybenzyloxy)-1,3-diphenyl-2-butenol (**3j**). To a stirred solution of (Z)-3(4-carbethoxybenzyloxy)-2-phenyl-1-iodopropene (1f; 700 mg, 1.66 mmol) in THF (4 mL) was added a solution of i-PrMgBr in THF (3.90 mL, 3.32 mmol; 0.85 M) at -85 °C. The reaction mixture was allowed to warm to -70 °C and was stirred overnight. Benzaldehyde (0.48 mL, 4.65 mmol) was added in THF (1.5 mL), and the reaction mixture was worked up after 4 h at -50 °C. The crude product obtained after evaporation of the solvent was purified by flash chromatography (CH₂Cl₂/ether 95:5), affording 3j (528 mg, 79% yield) as a colorless oil.

⁽⁶⁾ Snieckus, V. Chem. Rev. 1990, 90, 879.

⁽⁷⁾ Duboudin, J. G.; Jousseaume, B. *J. Organomet. Chem.* **1979**, *168*, 1. (8) The retention of the double bond is proven by the iodinolysis of the alkenylmagnesium reagent derived from the iodoallylic ether 1c, which gave

exclusively the starting material back (>99% Z).
(9) (a) Balkenhohl, F.; v. d. Bussche-Hünnefeld, C.; Lansky, A.; Zechel, C. Angew. Chem. 1996, 108, 2437; Angew. Chem., Int. Ed. Engl. 1996, 35, 2288. (b) Früchtel, J. S.; Jung, G. Angew. Chem. 1996, 108, 19; Angew. Chem., Int. Ed. Engl. 1996, 35, 17.